
The Boring Bits Bite Back

Helvetic Ruby 2024Katie Miller, she/her, @phedinkus

Authorization is important.

Authentication Authorization

Auth

Authentication
➾ keys to the castle

Authorization
➾who can access certain areas

Authorization is what I do.

Authorization is boring.

Authorization is boring.

As it should be.

Authorization gets
neglected.

App complexity
grows over time.

Complexity in
Authorization

gets bitey.

Think about
Authorization

early on.

Let’s build an app.

PawTracks

Manage and track
your pet’s care.

Feature Request:
Allow multiple
people to care

for a pet.

class Account
 has_many :users

class User
 belongs_to :account

Feature Refinement:
Some caretakers take

care of many pets.
Dog walkers, pet boarding, etc.

Feature: Allow multiple people to care for a pet.

class Account
 has_many :users

class User
 belongs_to :account

class Account
 has_many :users

class User
 belongs_to :account

class Account
 has_many :users

class User
 has_many :accounts

Feature Refinement:
One person is the
primary caretaker.

Feature: Allow multiple people to care for a pet.

Authorization feature!

Can pet’s caretakers all do
the same things?

Check users’ roles.

user.owner? =>

account.owner_id == user.id

user.caretaker? =>

account
 .caretaker_ids
 .include?(user.id)

if user.owner?
 # update pet details
else
 render :unauthorized
end

Feature finished.
Ship it.

Feature Request:
Allow support to

impersonate
customers.

K. I. S. S.
(Keep Is Simple Stupid)

user.admin? =>

user
 .email
 .match?(

/\@paw_tracks\.com/
)

Let the admins see
what the users see.

Account access check
account.includes?(user) ||
 user.admin?

PawTracks is growing! 📈

Project:
Vet Office

Integration

Vet and staff can
manage pet

health records in
PawTracks.

Add more roles.

user.veterinarian? =>

user.vet_office&.owner?

user.veterinarian_assistant? =>

user.vet_office&.assistant?

Check the new roles.

PetMedicationsController#update
if user.owner? ||
 user.veterinarian?
 # update pet medication
elsif user.caretaker? ||
 user.assistant? ||
 user.admin?
 render :unauthorized
end

user.veterinarian?
user.assistant?
user.owner?
user.caretaker?
user.admin?

Feature Request:
Prevent updating Pet

Medication if the
account is cancelled.

PetMedicationsController#update
if account.cancelled?
render :unauthorized

Lots of
if ... elsif ...

Statements.

Growth 📈 📈 📈

Complexity 📈 📈

Time to tackle Tech Debt.

Policy Authorization Pattern

Can a User
perform an
Action on a
Resource?

user.can?(:update, medication)

Why the Policy Pattern?

No external dependencies.

Why the Policy Pattern?

Copy 🍝
access checks

from controllers.

PetMedicationPolicy
def update?
 user.owner? ||
 user.veterinarian?
end

Cleanup idea! 💡

PetMedicationPolicy
def update?
 account.cancelled? ||

user.owner? ||
 user.veterinarian?
end

PetMedicationsController#update
if user.can?(:update?, medication)
 # update pet medication
else
 render :unauthorized
end

Gone bunches of
if ... elsif ...

statements!

Sigh of relief.
+189 -2860

Full speed ahead! 🚢

Project:
Corporate

Vet Integration

🤑 Enterprise 🤑

Add more roles.

Customer roles
user.billing_admin?
user.business_analyst?

Internal roles
user.sales?
user.senior_admin?

Add new roles to
policy action methods.

\o/

What is the problem
they are trying to solve?

Account Member
☐

Pet
create

read

update

delete☐

☐✓

Member Coordinator Role

create

read

update

delete

☐✓

☐✓

☐ create

read

update

delete☐

☐✓

☐

☐✓

☐

☐✓

What can an owner do?
What can a caretaker do?

What can ______ do?

How will we do this?

Can we support
custom roles in

policies?

Not just checking
roles in the policy

methods.

Policy Action method
names are very

interesting.

User::AccountPolicy
transfer_pet_to_new_vet_office?
destroy_invites?
mark_pets_favorite_food?

Authorization wasn’t a
requested feature…

until Enterprise.

Startup Law:
Thou shalt not

prematurely optimize

People use shortcuts to
avoid thinking about the

Authorization Architecture.

Startup Law:
Change is the only constant.

How could this
have been done

differently?

Proposal 1:
Leverage

relational data
structure

def caretaker?
role == "Caretaker"

end

Special conditional for
different types of roles.

Hard to remember how
users get a role.

Role names will change.

Role permissions will
change.

Roles will come and go.

class Member
 belongs_to :account
 belongs_to :user
 belongs_to :role

Easily update role names.
Easily add & retire roles.
Easily see role assignments.

One day Roles can
be created by the

customer.

Proposal 2:
Don’t use the

Policy
Authorization

Pattern.

Policy action
methods have no

constraints.

Can a User
perform an
Action on a
Resource?

Mixed
permission and state

checks.
🚫 🚫

Permissions not centralized.

Need a centralized, clear
way to declare

permissions per role and
resource.

Look around to see
what others are doing.

 Gems can help.

CanCanCan

if user.owner?
 can :manage, Pet
 can :manage, Account

if user.caretaker?
 can :read, Pet
 can :update, Pet

if user.admin?
 can :read, Pet
 can :read, Account

The Role
defines the
capabilities.

Proposal 3:
Try to follow

CRUD naming.
(Create Read Update Delete)

Enforce good naming habits with:

Linters
Documentation & Education

Code Owners

😁
1. Leverage Relational Data
2. No to Policies
3. Stick to CRUD

Don’t innovate in the
Authorization space.

You could be
building fun

features.

Give Authorization some thought.

The sooner the better.

Avoid big rewrites.

Don’t let the
boring bits
bite back.

Thank you!

Katie Miller, @phedinkus

