
Senior Software Engineer

The Very Hungry
Transaction

DANIEL COLSON

GitHub

Cat R. Pillar
• Job — Developer at BugHub

• Dislikes — Birds, Software Bugs

• Likes — Leaves, Actual Bugs

BugHub
• Large Online Community of Bugs

• More Bugs Than Any Other Site

transaction do
 ...
end

Monday
A Transaction is Born

“I’m very hungry. I want
groceries delivered to
my chrysalis.

Monday

def submit
 @order.save!
end

Monday

Order

id

OrderItem

order_id
sku
quantity

Product

sku

Monday

def submit
 @order.save!
end

=> BEGIN
=> INSERT INTO orders ...
=> INSERT INTO order_items ...
=> INSERT INTO order_items ...
 ...
=> COMMIT / ROLLBACK

Tuesday
Slow Transactions

“I was so excited about
my order, but it was
canceled and now
the items are not
available.

Tuesday

Order

id

OrderItem

order_id
sku
quantity

Product

sku

Tuesday

Order

id

OrderItem

order_id
sku
quantity

Product

sku
inventory

Tuesday

def submit
 @order.save!
end

Tuesday

def submit
 @order.save!
 @order.update_product_inventory
end

=> UPDATE products
 SET inventory = inventory - :order_item_quantity
 WHERE sku = :order_item_sku

Tuesday

def submit
 @order.save!
 @order.update_product_inventory
end

Should be Atomic

Tuesday

def submit
 Order.transaction do
 @order.save!
 @order.update_product_inventory
 end
end

Tuesday

=> BEGIN
=> INSERT INTO orders ...
=> INSERT INTO order_items ...
=> INSERT INTO order_items ...
 ...
=> UPDATE products ...
=> UPDATE products ...
 ...
=> COMMIT

🚨Bug Report

Increased 500 responses for placing orders

Tuesday

Lock Contention 🔒🤼

Tuesday

Lock Contention 🔒🤼

Bug 1 Bug 2

=> BEGIN => BEGIN
=> UPDATE ... sku = APL1 => UPDATE ... sku = APL1
 🔒Row locked ... Waiting ...
 🔒Row locked ... Waiting ...
 🔒Row locked ... Waiting ...
=> COMMIT 🔒Row locked ...

Tuesday

Little Opportunity for Contention

=> BEGIN
=> UPDATE products ... WHERE sku = APL1
=> UPDATE products ... WHERE sku = ORG5
=> COMMIT

< 1 millisecond

Tuesday

Large Opportunity for Contention

=> BEGIN
=> UPDATE products ... WHERE sku = APL1

=> UPDATE products ... WHERE sku = ORG5

=> COMMIT

> 1 second

Tuesday

Large Opportunity for Contention

=> BEGIN
=> UPDATE products ... WHERE sku = APL1

=> UPDATE products ... WHERE sku = ORG5

=> COMMIT

Slow Queries

Tuesday

Large Opportunity for Contention

=> BEGIN
=> UPDATE products ... WHERE sku = APL1
=> UPDATE products ... WHERE sku = PLM3
=> UPDATE products ... WHERE sku = BRY4
=> UPDATE products ... WHERE sku = PER2
 ... (hundreds more)
=> UPDATE products ... WHERE sku = ORG5
=> COMMIT

Too Many Queries

Tuesday

Large Opportunity for Contention

=> BEGIN
=> UPDATE products ... WHERE sku = APL1
=> UPDATE products ... WHERE sku = PLM3
=> UPDATE products ... WHERE sku = BRY4
=> UPDATE products ... WHERE sku = PER2
 ... (hundreds more)
=> UPDATE products ... WHERE sku = ORG5
=> COMMIT

Waiting on Locks

Tuesday

def submit
 Order.transaction do
 @order.save!
 @order.update_product_inventory
 end
end

Tuesday

def submit
 Order.transaction do
 @order.save!
 @order.update_product_inventory
 end
end

Wednesday
Background Jobs

“I don’t have time to
waste. I want my
orders to submit
without delay.

Wednesday

class Order < ApplicationRecord
 after_create :finalize_order
end

Wednesday

class Order < ApplicationRecord
 after_create :finalize_order

 def finalize_order
 # Sync with billing platform
 # Send confirmation email
 # etc.
 end
end

Wednesday

class Order < ApplicationRecord
 after_create :finalize_order

 def finalize_order
 OrderFinalizationJob.perform_later
 end
end

🚨Bug Report

Confirmation emails delayed by minutes

Wednesday

=> BEGIN
=> INSERT INTO orders ...
 => Enqueue Job

 => Job Executes and Fails

=> UPDATE products ...
 => Job Retries and Fails

=> COMMIT
 => Job Retries and Succeeds

Wednesday

=> BEGIN
=> INSERT INTO orders ...
 => Enqueue Job

 => Job Executes and Fails

=> UPDATE products ...
 => Job Retries and Fails

=> ROLLBACK
 => Job Retries and Fails

 => Job Retries and Fails

Wednesday

class Order < ApplicationRecord
 after_create :finalize_order

 def finalize_order
 OrderFinalizationJob.perform_later
 end
end

Wednesday

class Order < ApplicationRecord
 after_create_commit :finalize_order

 def finalize_order
 OrderFinalizationJob.perform_later
 end
end

Wednesday

=> BEGIN
=> INSERT INTO orders ...

=> UPDATE products ...
=> COMMIT
 => Enqueue Job

 => Job Executes and Succeeds

Thursday
External Services

“I want my orders
fulfilled quickly and
accurately.

Thursday

def submit
 Order.transaction do
 @order.save!
 @order.update_product_inventory
 end
end

Thursday

def submit
 Order.transaction do
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory
 end
end

Thursday

=> BEGIN
=> INSERT INTO orders ...
 => External Call

=> UPDATE products ...

=> COMMIT

🚨Bug Report

Site-wide failure

Thursday

def submit
 Order.transaction do
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory
 end
end

Responding Slowly

Thursday

=> BEGIN
=> INSERT INTO orders ...

=> UPDATE products ...

=> COMMIT / ROLLBACK

Slow External Call

Thursday

=> BEGIN
=> INSERT INTO orders ...

=> UPDATE products ...

=> COMMIT / ROLLBACK

Idle Locks Held

Thursday

=> BEGIN
=> INSERT INTO orders ...

=> UPDATE products ...

=> COMMIT / ROLLBACK

Idle Connection in Use

Thursday

BEGIN

Database

BEGIN

BEGIN

BEGIN

BEGIN

BEGIN

BEGIN

BEGIN

BEGIN

BEGIN

BEGIN

BEGIN

BEGIN
BEGIN

BEGIN

BEGIN

BEGIN

BEGIN

BEGIN
BEGIN

BEGIN BEGIN

BEGIN

Thursday

Database

🚨Connections Exhausted
🚨Connections Exhausted

🚨Connections Exhausted
🚨Connections Exhausted

Thursday

def submit
 Order.transaction do
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory
 end
end

Configure Timeout

Thursday

def submit
 FulfillmentClient.submit_order(@order)

 Order.transaction do
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory
 end
end

Thursday

def submit
 Order.transaction do
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory
 end

 FulfillmentClient.submit_order(@order)
end

Thursday

def submit
 Order.transaction do
 @order.save!
 @order.update_product_inventory
 end

 FulfillmentClient.submit_order(@order)
 @order.update!(status: :submit)
end

Friday
Multiple Databases

“I expect a reliable
website. BugHub
has been having
a lot of problems
lately.

Friday

ProductsOrders

Friday

def submit
 Order.transaction do
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory
 end
end

Friday

def submit
 Order.transaction do
 Product.transaction do
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory
 end
 end
end

🚨Bug Report

All of the above, but worse

Friday

def submit
 Order.transaction do
 Product.transaction do
 ...
 end
 end
end

Problems Affect Both Databases

🚨Bug Report

Products incorrectly marked out-of-stock

Friday

def submit
 Order.transaction do
 Product.transaction do
 ...
 end
 end
end

Not Atomic

Friday

Orders Database

=> BEGIN
=> INSERT INTO orders ...

=> COMMIT

Products Database

=> BEGIN
=> UPDATE products ...
=> COMMIT

Both Commit 👍

Friday

Orders Database

=> BEGIN
=> INSERT INTO orders ...

=> ROLLBACK

Products Database

=> BEGIN
=> UPDATE products ...
=> ROLLBACK

Both Rollback 👍

Friday

Orders Database

=> BEGIN
=> INSERT INTO orders ...

=> ROLLBACK

Products Database

=> BEGIN
=> UPDATE products ...
=> COMMIT

Not Atomic 👎

Friday

Orders Database

=> BEGIN
=> INSERT INTO orders ...

Products Database

=> BEGIN
=> UPDATE products ...
=> COMMIT

Idle

❌ Connection Failed

Friday

def submit
 Order.transaction do
 Product.transaction do

...
 end
 end
end

Friday

def submit
 Product.transaction do
 ...
 end

 Order.transaction do
 ...
 end
end

Friday

def submit
 Order.transaction do
 ...
 end

 Product.transaction do
 ...
 end
end

Weekend
Rest and Reflect

Weekend

External Calls within Transactions are a Risk

• Data Integrity Problems

• Cascading Failures

• Includes: HTTP requests, emails, jobs, queries to other databases, etc.

Weekend

Slow Transactions are a Risk

• Slow Requests

• Contention

• Resource Exhaustion

Monday
Metamorphosis

def submit
 Order.transaction do
 Product.transaction do
 Chrysalis.transaction do
 code.not_meant_for_reading!
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory

 @product_suggestions = SuggestionService.build_for(@bug)

seriously.stop_reading_this!
 if @order.bug.caterpillar?
 @bug.very_hungry!
 basket = Chrysalis::Basket.create!(@bug)
 PromotionMailer.new_basket(basket).deliver_later
 @product_suggestions << Chrysalis.default_items_for(@bug)
 else
 @bug.book_suggestions.create!(
 Book.find_by(author: "Eric Carle”, bug: @order.bug)
)
 end

 @bug.suggest(@product_suggestions)
 @bug.friends.each do |friend|
 @order.share_with(friend) if @bug.sharing_orders?
 end
 rescue => e
 handle_transaction_error(e)
 ensure
 nobody.should_have_read_any_of_this
 end
 end
 end
end

Monday

def submit
 Order.transaction do
 Product.transaction do
 Chrysalis.transaction do
 code.not_meant_for_reading!
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory

 @product_suggestions = SuggestionService.build_for(@bug)

seriously.stop_reading_this!
 if @order.bug.caterpillar?
 @bug.very_hungry!
 basket = Chrysalis::Basket.create!(@bug)
 PromotionMailer.new_basket(basket).deliver_later
 @product_suggestions << Chrysalis.default_items_for(@bug)
 else
 @bug.book_suggestions.create!(
 Book.find_by(author: "Eric Carle”, bug: @order.bug)
)
 end

 @bug.suggest(@product_suggestions)
 @bug.friends.each do |friend|
 @order.share_with(friend) if @bug.sharing_orders?
 end
 rescue => e
 handle_transaction_error(e)
 ensure
 nobody.should_have_read_any_of_this
 end
 end
 end
end

Monday

Small Incremental Changes

def submit
 Order.transaction do
 Product.transaction do
 Chrysalis.transaction do
 code.not_meant_for_reading!
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory

 @product_suggestions = SuggestionService.build_for(@bug)

seriously.stop_reading_this!
 if @order.bug.caterpillar?
 @bug.very_hungry!
 basket = Chrysalis::Basket.create!(@bug)
 PromotionMailer.new_basket(basket).deliver_later
 @product_suggestions << Chrysalis.default_items_for(@bug)
 else
 @bug.book_suggestions.create!(
 Book.find_by(author: "Eric Carle”, bug: @order.bug)
)
 end

 @bug.suggest(@product_suggestions)
 @bug.friends.each do |friend|
 @order.share_with(friend) if @bug.sharing_orders?
 end
 rescue => e
 handle_transaction_error(e)
 ensure
 nobody.should_have_read_any_of_this
 end
 end
 end
end

Monday

Defer Until After Commit

- Rails 7.2 - Automatically delay Active Job
enqueues to after commit #51426

- Rails 7.2 - Allow to register transaction
callbacks outside of a record #51474

https://github.com/rails/rails/pull/51426
https://github.com/rails/rails/pull/51474

def submit
 Order.transaction do
 Product.transaction do
 Chrysalis.transaction do
 code.not_meant_for_reading!
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory

 @product_suggestions = SuggestionService.build_for(@bug)

seriously.stop_reading_this!
 if @order.bug.caterpillar?
 @bug.very_hungry!
 basket = Chrysalis::Basket.create!(@bug)
 PromotionMailer.new_basket(basket).deliver_later
 @product_suggestions << Chrysalis.default_items_for(@bug)
 else
 @bug.book_suggestions.create!(
 Book.find_by(author: "Eric Carle”, bug: @order.bug)
)
 end

 @bug.suggest(@product_suggestions)
 @bug.friends.each do |friend|
 @order.share_with(friend) if @bug.sharing_orders?
 end
 rescue => e
 handle_transaction_error(e)
 ensure
 nobody.should_have_read_any_of_this
 end
 end
 end
end

Monday

Identify Other Problematic Transactions

- Database Observability

- Rails 7.1 - Instrument Active Record
transactions #49192

https://github.com/rails/rails/pull/49192

def submit
 Order.transaction do
 Product.transaction do
 Chrysalis.transaction do
 code.not_meant_for_reading!
 @order.save!
 FulfillmentClient.submit_order(@order)
 @order.update_product_inventory

 @product_suggestions = SuggestionService.build_for(@bug)

seriously.stop_reading_this!
 if @order.bug.caterpillar?
 @bug.very_hungry!
 basket = Chrysalis::Basket.create!(@bug)
 PromotionMailer.new_basket(basket).deliver_later
 @product_suggestions << Chrysalis.default_items_for(@bug)
 else
 @bug.book_suggestions.create!(
 Book.find_by(author: "Eric Carle”, bug: @order.bug)
)
 end

 @bug.suggest(@product_suggestions)
 @bug.friends.each do |friend|
 @order.share_with(friend) if @bug.sharing_orders?
 end
 rescue => e
 handle_transaction_error(e)
 ensure
 nobody.should_have_read_any_of_this
 end
 end
 end
end

Monday

Prevent Further Problematic Transactions

Safe Transactions

Keep Transactions Short

- Ideally < 1 Second

Safe Transactions

Fast Queries

Safe Transactions

Limit # of Queries

- Ideally < 100

Safe Transactions

No External Calls

Safe Transactions

As Little Code as Possible

- Default to after_commit callbacks

Safe Transactions

Do You Really Need a Transaction?

Daniel Colson
@composerinteralia

Illustrated by ChangHo Kim and DongBeom Kim

