
Lessons learned from running
Rails apps on-premise

Andy Pfister, Simplificator AG

How Did We Get Here? 
Simplificator builts custom software ...

How Did We Get Here? 
Simplificator builts custom software ...

... docuteam provides services and software for digital archives ...

How Did We Get Here? 
Simplificator builts custom software ...

... docuteam provides services and software for digital archives ...

... these services are also provided to customer on-premise ...

How Did We Get Here? 
Simplificator builts custom software ...

... docuteam provides services and software for digital archives ...

... these services are also provided to customer on-premise ...

... "hey, couldn't we simplify our on-premise deployment?"

Windows  / Ubuntu 
MySQL  / Microsoft SQL Server  /

PostgreSQL 
Offline installation 

Support different database systems 

This is not a lot of trouble ...
Rails (ActiveRecord) -> database
group :mssql do

 gem "activerecord-sqlserver-adapter"

end

group :mysql do

 gem "mysql2"

end

group :pg do

 gem 'pg'

end

bundle config set without "mssql mysql"

bundle install

There are minor nuances

There are minor nuances
MySQL needs charset in schema.rb
create_table "active_storage_attachments", charset: "utf-8", force: :cascade do |t|

 t.string "name", null: false

...

end

There are minor nuances
MySQL needs charset in schema.rb
create_table "active_storage_attachments", charset: "utf-8", force: :cascade do |t|

 t.string "name", null: false

...

end

MySQL has LONGTEXT (4GB) vs PostgreSQL (1GB)

There are minor nuances
MySQL needs charset in schema.rb
create_table "active_storage_attachments", charset: "utf-8", force: :cascade do |t|

 t.string "name", null: false

...

end

MySQL has LONGTEXT (4GB) vs PostgreSQL (1GB)
MSSQL needs special annotation for JSON columns
class MyModel < ApplicationRecord

if ActiveRecord::ConnectionAdapters.const_defined? :SQLServerAdapter

 attribute :my_json_column, ActiveRecord::Type::SQLServer::JSON.new

end

end

You can capture almost anything with
Continous integration
We settled with Azure pipelines

jobs:

 - job: "Test job"

 strategy:

 matrix:

"MySQL 5.7":

 container_image: "mysql:5.7"

 database_url: "mysql2://mysql:mymysqlpassword@db/pipelines"

"PostgreSQL 16":

 container_image: "postgres:16"

 database_url: "postgresql://postgres:mypostgrespassword@db/

pipelines"

"MSSQL 2022":

 container_image: "mcr.microsoft.com/mssql/server:2022-latest"

 database_url: "sqlserver://sa:mymicrosoftpassword@db/pipelines"

 To recap
• Organize database adapters in different groups

• Use CI to test against multiple databases

 Support different operating systems 

Regardless of Windows or Linux ...
... your Ruby code (should) look(s) the

same

Installing Ruby ...
We only really need one Ruby version on a server
You could use uru to switch between versions

Installing Ruby on Windows ...
Get it from rubyinstaller.org

"MSYS2 (Minimal SYStem 2) is a collection of tools and libraries providing
you with an easy-to-use environment for building, installing and running
native Windows software."

Gems with native extensions
$ gem install puma --no-document

Fetching puma-6.4.2.gem

Fetching nio4r-2.7.1.gem

Building native extensions. This could take a while...

Successfully installed nio4r-2.7.1

Building native extensions. This could take a while...

Successfully installed puma-6.4.2

2 gems installed

On Linux, you typically have gcc available for compilation.
On Windows, RubyInstaller2 sets up MSYS2 for you.

$ gem install nokogiri --no-document
Fetching nokogiri-1.16.5-x86_64-linux.gem
Successfully installed nokogiri-1.16.5-x86_64-linux
1 gem installed

$ tree nokogiri

nokogiri

├── 3.0

│ └── nokogiri.so

├── 3.1

│ └── nokogiri.so

├── 3.2

│ └── nokogiri.so

├── 3.3

│ └── nokogiri.so

├── class_resolver.rb

├── css

│ ├── node.rb

│ ├── parser_extras.rb

Where am I going with this?
For Windows, there are more precompiled gems
It might take longer, until you can go to the next Ruby
version.

The Windows pipeline
We only run one job per database system to save
time.

The Windows pipeline
We only run one job per database system to save
time.

Azure DevOps only has a few selected Ruby versions
pre-installed

The Windows pipeline
We only run one job per database system to save
time.

Azure DevOps only has a few selected Ruby versions
pre-installed

Sometimes we have to install the entire database
system (like MSSQL)

 To recap
• The Ruby code looks mostly the same across different OS

• Precompiled gems can delay Ruby upgrades

• Use CI to test against different OS

• Windows build could be slow; keep a VM around

Offline installation 

What does that mean?
We need to ship everything that our Rails app needs to run
in a package.

For other languages, this is easy ...
 =>  + JAR files
 => Executable

 =>  + Gems + your code

What about Docker? 
TL;DR not a good solution on Windows (Server) ...
Linux Container on Windows require a "Linux virtual machine" (WSL)

Windows Container have large image sizes and limited compatibility between
different OS versions

: *

: *

: 
Assets ship precompiled - no ExecJS dependency on runtime.

$ bundle cache --all-platforms
...
Using toxiproxy 2.0.2
Bundle complete! 9 Gemfile dependencies, 10 gems now installed.
Use `bundle info [gemname]` to see where a bundled gem is installed.
Updating files in vendor/cache
Fetching gem metadata from https://rubygems.org/....
 * rake-13.0.6.gem
 * connection_pool-2.2.5.gem
 * mini_portile2-2.5.3.gem
 * minitest-5.14.4.gem
 * minitest-ci-3.4.0.gem
 * rake-compiler-1.2.1.gem
 * rake-compiler-dock-1.4.0.gem
 * toxiproxy-2.0.2.gem

How do we install it?
There is a custom PowerShell script which takes care of:

• Extracting the files

• Installs Ruby and Gems (from vendor/cache)

• Setting up the required configuration files (like
database.yml)

• Running Rails migrations

• Configuring the required Windows services

This solution is not exclusive to our Rails
applications ...
We combine several softwares which make sense to be deployed together and
then run a job on CI for them.

After installation, we do some smoke tests (hello, are you there? )

Why PowerShell?
• Ansible does not work on Windows.

• The On-Premise team at docuteam is proficient with
PowerShell, allowing them to contribute.

• We wanted to avoid introducing additional technologies
(like Chef, InstallShield, Chocolatey / NuGet), keep it
simple.

• Promising: github.com/Largo/ocran (Turn Ruby projects
into .exe files on Windows)

 To recap
• A ZIP file with Ruby, gems and code

• A PowerShell script which helps with installation

• CI for confidence in our deployment scripts

Releases 

Every commit is a potential release.
Loosly based from Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation by David Farley and Jez Humble

At Simplificator, every commit on the main branch is shipped to production.

For an on-premise scenario, this is rather
difficult
We might not have direct access to the system from a pipeline.

Or certain policies are in place which take time per release.

So there has to be a compromise.
We do regular releases, which get shipped soon to the cloud offering.

On-Premise customer get (usually) one update a year, the so-called annual
release.

Semantic versioning
The annual release is usually major release (and the only one per year)

We avoid to break features between two major releases, but rather "deprecate"
first before rework or removal.

This requires some planning ahead.
• July 2021: Implementation of a replacement feature

• April 2022: Shipped to on-premise customers

• January 2023: Original feature removed from code base.

• May 2023: Shipped to on-premise customers

 To recap
• Continous deployment to on-premise infrastructure likely

not possible

• Find a regular update cycle for your on-premise
customers

• Decide if you want to break things in-between major
releases

Thank you very much! 

: andyundso
: @docker_enjoyer@ruby.social
: andy.pfister@simplificator.com /

andy.pfister@hotmail.ch

