
Avoiding Sneaky
Testing Antipatterns

Hi!
I'm Sarah

sarah.lima@thoughtbot.com
sarahraqueld

Anti-patterns are the opposite of best
practices.

They seem to work, but the larger
context or the long-term
consequences are often not
considered.

class User

 def save

 ...

 end

end

 it 'does not return false when the email is valid' do

 user = User.new(email: 'valid@example.com')

 expect { user.save }.not_to be false

 end

… you find a bug and you create this test

 it 'does not return false when the email is valid' do

 expect { user.save }.not_to be false

 end

 expect { user.save }.not_to raise_error

 it 'returns true with a valid email' do

 user = User.new(email: 'valid@example.com')

 expect(user.save).to be true

 end

False Positives

False Positives

How to avoid:
Make sure you see the test fail

Mystery Guest
Let's not!

RSpec.describe User do

 let(:user) { create(:user) }

 it 'validates the presence of the name' do

 expect(user).to validates_presence_of(:name)

 end

end

The test reader is not able to see the cause
and effect between fixture and verification
logic because part of it is done outside the

Test Method.

Arrange - Act - Assert

https://automationpanda.com/2020/07/07/arrange-act-assert-a-pattern-for-writing-good-tests/

Test Hooks

class ApplicationController < ActionController::Base
 unless Rails.env.test?
 before_filter :require_login
 end
end

Test Hooks

visit root_path(as: user)

Leaking Domain Knowledge

def calculate_total_price(offer)

 total_fees = offer.charges.sum { |charge| charge.amount }

 offer.face_value + total_fees

end

Leaking Domain Knowledge
RSpec.describe "Offer Price" do

 it "returns the sum of all charges amounts with the face value" do

offer = Offer.new(

 face_value: 1000,

 charges: [

 Charge.new(type: "fee", amount: 50),

 Charge.new(type: "tax", amount: 100)

]

)

 final_price = calculate_total_price(offer)

 expect(final_price).to eq(...)

 end

end

Leaking Domain Knowledge
RSpec.describe "Offer Price" do

 it "returns the sum of all charges amounts with the face value" do

 end

 it "other scenario" do

 end

 it "other scenario" do

 end

 def expected_price

 end

end

Leaking Domain Knowledge
RSpec.describe "Offer Price" do

 it "returns the sum of all charges amounts with the face value" do

 offer = {...}

 final_price = calculate_offer_price(offer)

 expect(final_price).to eq(1150)

 end

end

Leaking Domain Knowledge

Instead of duplicating the domain logic, pre-calculate the

expected results with the help of a domain expert and

hard-code the results into your tests.

Expressive

Expressive

Maintainable

Expressive

Maintainable

Isolated

Expressive

Maintainable

Isolated

Reliable

References

books.thoughtbot.com/assets/testing-rails.pdf

blog.thoughtbot.com/tags/testing

thoughtbot.com/upcase/videos/testing-antipatterns

