Avoiding Sneaky
Testing Antipatterns

4% Helvetic
Ruby

Hil
I'm Sarah

thoughtbot

sarah.lima@thoughtbot.com @
sarahraqueld ©

D)

thoughtbot/
factory_bot

A library for setting up Ruby objects as test data.

=
i

A 257 Q2 158k w 8k % 3k O
Contributors Used by Stars Forks

Anti-patterns are the opposite of best
practices.

They seem to work, but the larger
context or the long-term
conseguences are often not
considered.

class User

def save

end

end

.. you find a bug and you create this test

it 'does not return false when the email i1s wvalid' do

user = User.new(email: 'valid@example.com')

expect { user.save }.not to be false

end

it 'does not return false when the email i1s wvalid' do

expect { user.save }.not to be false

end

expect { user.save }.not to ralse error

it 'returns true with a valid email' do
user = User.new(email: 'valid@example.com')
expect (user.save) .to be true

end

False Positives

False Positives

How to avoid:
Make sure you see the test fail

Mystery Guest

Let's not!

RSpec.describe User do

let (:user) { create(:user) }

it 'validates the presence of the name' do
expect (user) .to validates presence of (:name)
end

end

The test reader is not able to see the cause

and effect between fixture and verification

logic because part of it is done outside the
Test Method.

Arrange - Act - Assert

https://automationpanda.com/2020/07/07/arrange-act-assert-a-pattern-for-writing-good-tests/

Test Hooks

class ApplicationController < ActionController: :Base
unless Railils.env.test?
before filter :requilire login
end
end

Test Hooks

Clearance

Rails authentication with email & password.

Clearance is intended to be small, simple, and well-tested. It has opinionated defaults but is intended to be easy to
override.

visit root path(as: user)

Leaking Domain Knowledge

def calculate total price(offer)
total fees = offer.charges.sum { |[charge| charge.amount }
offer.face value + total fees

end

Leaking Domain Knowledge

RSpec.describe "Offer Price" do
it "returns the sum of all charges amounts with the face value" do
offer = Offer.new(
face value: 1000,
charges: [
Charge.new (type: "fee", amount: 50),

Charge.new (type: "tax", amount: 100)

final price = calculate total price(offer)
expect (final price).to eg(...)
end

end

Leaking Domain Knowledge

RSpec.describe "Offer Price" do
it "returns the sum of all charges amounts with the face value" do

end

it "other scenario" do

end

it "other scenario" do

end

def expected price
end

end

Leaking Domain Knowledge

RSpec.describe "Offer Price" do
it "returns the sum of all charges amounts with the face wvalue" do

offer = {...}

final price = calculate offer price(offer)
expect (final price).to eqg(1150)
end

end

Leaking Domain Knowledge

Instead of duplicating the domain logic, pre-calculate the
expected results with the help of a domain expert and

hard-code the results into your tests.

Expressive

Expressive

Maintainable

Expressive
Maintainable

Isolated

Expressive
Maintainable
|solated
Reliable

References

books.thoughtbot.com/assets/testing-rails.pdf

T Stitdison Wy Jignaticro Srees

SN %
2 y\ b

XUNIT TEST
PATTERNS

blog.thoughtbot.com/tags/testing

thoughtbot.com/upcase/videos/testing-antipatterns

